Abstract

Raman spectroscopy has been used to study the deformation micromechanics of the single-fibre pull-out test for a carbon fibre/epoxy resin system using surface-treated and untreated versions of the same type of PAN-based fibre. It has been possible to determine the detailed strain distribution along embedded fibres and it has been found that it varies with the level of strain in the fibre outside the resin block. The variation of interfacial shear stress along the fibre/matrix interface has been determined using the balance of forces equilibrium and this has been compared with the single values of interfacial shear strength determined from conventional pull-out analyses. It has been demonstrated that it is possible to identify situations where the interface is well-bonded, partially debonded or fully debonded and also to follow the failure mechanisms in detail. It has been found that the level of interfacial adhesion is better for the surface-treated fibre and that, for the untreated fibre, interfacial failure takes place by the cohesive failure of a weakly-bonded surface skin that appears to be removed by the surface pretreatment process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.