Abstract
We report atomistic studies of single-wall carbon nanotubes with very large aspect ratios subject to compressive loading. These long tubes display significantly different mechanical behavior than tubes with smaller aspect ratios. We distinguish three different classes of mechanical response to compressive loading. While the deformation mechanism is characterized by buckling of thin shells in nanotubes with small aspect ratios, it is replaced by a rod-like buckling mode above a critical aspect ratio, analogous to the Euler theory in continuum mechanics. For very large aspect ratios, a nanotube is found to behave like a flexible macromolecule which tends to fold due to vdW interactions between different parts of the carbon nanotube. This suggests a shell-rod-wire transition of the mechanical behavior of carbon nanotubes with increasing aspect ratios. While continuum mechanics concepts can be used to describe the first two types of deformation, statistical methods will be necessary to describe the dynamics of wire-like long tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.