Abstract
Fold-and-thrust belts and accretionary prisms exhibit considerable variability in slip behaviors along active faults. While numerous studies have investigated fault mechanics and slip behaviors in carbonate-, shale-, and sandstone-hosted faults as well as clay-rich portions of shallow accretionary prisms, the deformation mechanisms and slip behaviors of deformed, thrust-top molasse-type conglomerates remain poorly understood. To fill this knowledge gap, we conducted structural and microstructural analyses on exhumed and deformed conglomerates in the footwall of an out-of-sequence thrust from the Central Apennines fold-and-thrust belt (Italy). Our findings aim to constrain conglomerate deformation mechanisms and infer possible slip behaviors. We observed flattened pebbles and an intense foliation comprising densely spaced, thrust-parallel, clay-rich stylolites that indicate slow deformation attributed to carbonate dissolution during aseismic creep. In contrast, quartz clasts with calcite micro veins and micrometer-thick slip increments in slickenfibers suggest fast brittle failure and fluid overpressure in competent pebbles, while the matrix continues to deform aseismically through pressure solution. The general structure is similar to block-in-matrix textures observed in tectonic mélanges from exhumed subduction zones and accretionary prisms. Our results provide new insights into the slip behaviors of shallow (<∼1 km) portions of fold-and-thrust belts, complementing existing understandings of deformation mechanisms and slip behaviors across different depth ranges in fold-and-thrust belts and accretionary prisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.