Abstract
In general, faults cutting through the unconsolidated sediments of the Roer Valley Rift System (RVRS), The Netherlands, form strong barriers to horizontal groundwater flow. The relationships between deformation mechanisms along fault zones and their impact on the hydrogeological structure of the fault zone are analyzed in a shallow (0–5 m below land surface) trench over one of the faults in the study area. Recently developed digital-image-analysis techniques are used to estimate the spatial distribution of hydraulic conductivity at the millimeter-scale and to describe the micromorphologic characteristics of the fault zone. In addition, laboratory measurements of hydraulic conductivity on core-plug samples show the larger-scale distribution of hydraulic conductivity in the damage zone flanking the main fault plane. Particulate flow is the deformation mechanism at shallow depths, which causes the damage zone around the fault, in the sand-rich parts, to have a relatively enhanced hydraulic conductivity. The fault core is characterized by reduced hydraulic conductivity due to clay smearing, grain-scale mixing, and iron-oxide precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Hydrogeology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.