Abstract

Abstract Nylon 6 films were prepared by gelation/crystallization from solutions. The solvents used were a formic acid-chloroform mixture, trifluoroethanol and benzyl alcohol. Maximum values for Young's modulus and the orientational degree of the b-axes (the crystal fibre axes), were obtained for the drawn films prepared from formic acid-chloroform solution. These values, however, were lower than those of melt films. To study the reason for this, the deformation mechanism of gel films prepared from the formic acid-chloroform cosolvent was investigated and compared with the deformation mechanism of melt film using the orientation distribution function of crystallites. The distribution functions of both films exhibited similar profiles, indicating the preferential orientation of the b-axis with respect to the stretching direction by the rotation of crystallites around the c-axis, leading to taut tie molecules. This mechanism was found to be quite different from the molecular orientation of ultradrawn polyethylene gel films associated with significant crystal transformation from a folded to a fibrous type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.