Abstract

For purpose of investigating the damage mechanism and tensile properties of the nanocrystalline CoCrCuFeNi high-entropy alloy, the tension experiment simulations were performed using the molecular dynamics method. The effects of the grain size, strain rate, experiment temperature, and percentage of components were considered in detail. By changing the simulated conditions of the tension experiment, the deformation and the grain growth of the nanocrystalline CoCrCuFeNi high-entropy alloy were mentioned and analyzed. The important mechanical factors such as phase transformation, stress-strain relation, shear strain, tensile strength, dislocation density, and von Mises stress were strongly influenced by changing the simulated conditions and deeply discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.