Abstract

Most applications of Synthetic Aperture Radar (SAR) make only use of the amplitude information in just one image. Interferometric SAR (InSAR) makes use mainly of the phase measurements in two or more SAR images of the same scene, acquired at two different moments and/or at two slightly different locations. By interference of the two images, very small slant-range changes of the same surface can be inferred. These slant-range changes can be related to topography and/or surface deformations. InSAR thus has the potential of mapping centimeter-scale ground displacements over a region many tens of kilometers in size at a resolution of a few meters making it one of the most promising space-geodetic techniques for monitoring Earth's surface deformations. The goal of this paper is to discuss some of the potential new applications of InSAR for the monitoring of deformations, and to show its major limitations. Some potential new applications of InSAR related to surface-change detection including earthquake and crustal studies, the monitoring of volcanoes and anthropogenic effects, and the monitoring of glaciers and ice sheets are presented. The discussion on the limitations of InSAR for surface-change detection focuses on atmospheric perturbations and the problem of temporal decorrelation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.