Abstract

AbstractBonding between polymers through interdiffusion of macromolecules is a well‐known mechanism of polymer adhesion. A new polymer bonding mechanism in the solid state, taking place at ambient temperatures well below the glass transition value (Tg), has been recently reported; in this mechanism, bulk plastic compression of polymer films held in contact led to adhesion over timescales of the order of a fraction of a second. In this study, we prepared various blends of plasticized polymer films with desirable ductility from amorphous and semicrystalline powders of hydroxypropyl methylcellulose and polyvinyl alcohol derivatives; then, we observed the bonding of these polymers at ambient temperatures, up to 80 K below Tg, purely through mechanical deformation. The deformation‐induced bonding of the polymer films studied in this work led to interfacial fracture toughnesses in the range of 1.0–21.0 J/m2 when bulk plastic strains between 3% and 30% were imposed across the films. Scanning electron microscopy observation of the debonded interfaces also confirmed that bonding was caused by deformation‐induced macromolecular mobilization and interpenetration. These results expand the range of applicability of sub‐Tg, solid‐state, deformation‐induced bonding processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.