Abstract

We study the mechanisms of deformation driven chemical mixing in a metallic nanocomposite model system. More specific, we investigate shear banding at the atomic scale in an amorphous CuZr/ crystalline Cu nanolaminate, deformed by microindentation. Three CuZr/Cu multilayer systems (100nm Cu/100nm CuZr, 50nm Cu/100nm CuZr, and 10nm Cu/100nm CuZr) are fabricated to study the effect of layer thickness on shear band formation and deformation induced alloying. The chemical and structural evolution at different strain levels are traced by atom probe tomography and transmission electron microscopy combined with nano-beam diffraction mapping. The initially pure crystalline Cu and amorphous CuZr layers chemically mix by cross-phase shear banding after reaching a critical layer thickness. The Cu inside the shear bands develops a high dislocation density and can locally undergo transition to an amorphous state when sheared and mixed. We conclude that the severe deformation in the shear bands in the amorphous layer squeeze Zr atoms into the Cu dislocation cores in the Cu layers (thickness <5nm), resulting in local chemical mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call