Abstract

Contrary to the characteristic strengthening of polycrystalline ceramics with a decrease in grain size, extremely fine nanocrystalline ceramics exhibit softening, increased plasticity and an inverse Hall-Petch relation. Despite experimental evidence, questions remain regarding the underlying deformation mechanisms governing this abnormal mechanical behavior. In the present study, an in-depth microstructural examination was performed on nanostructured transparent magnesium aluminate spinel (MgAl2O4) subjected to microhardness tests. Microstructural observations revealed regions strained to various degrees below the point of indentation, containing varying amounts of dislocations and nano-cavities. Furthermore, the residual strain in different areas was estimated by local electron diffraction. These observations and analysis provided evidence for grain boundary (GB) mediated mechanisms (e.g., GB sliding and rotation). Moreover, shear bands formed and were found to be associated with micro-cracking. By combining the microstructural analysis with suitable models, it was concluded that these mechanisms govern plastic deformation. By elucidating how strain is accommodated within nanocrystalline ceramics, a deeper understanding of their unique mechanical behavior is gained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.