Abstract
The microscopic c.m. correction energies for nuclei ranging from oxygen to calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.