Abstract

Unlike Aluminum (Al) alloys, precipitation strengthening of Magnesium (Mg) alloys has proven challenging. Precipitate density is typically too low, and precipitate size is often too large and elongated to enhance the resistance to plastic deformation significantly. Mimicking recent work in Al alloys, we are exploring how low-temperature plastic deformation can enhance the density, size, and morphology of common intermetallic particles and thereby lead to significant hardening in Mg alloys. The low temperatures tend to favor nucleation overgrowth, while the deformation provides vacancies and dislocations that can assist nucleation. Using equal channel angular extrusion, and moderate temperatures, we explore the processing and thermodynamic factors controlling nucleation and growth of precipitates in Mg–Al and Mg–Zn binary alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.