Abstract
Both maximum displacement and displacement ductility factors should be considered in the design of a blast-resistant structure since both parameters correlate with an expected performance level of a reinforced concrete (RC) structural member during a blast event. The blast-resistant design procedure discussed in this paper takes into account both the maximum displacement and displacement ductility responses of an equivalent single-degree-of-freedom (SDOF) system, while the response of the SDOF system is made equivalent to the corresponding targets of design performance. Some approximate errors are present when comparing the actual responses of the structural member, which has been designed for blast loading, and their corresponding design performance targets. Two indices are defined to quantify the approximation errors, and their expressions are obtained through comprehensive numerical and statistical analyses. By using the error indices, the design procedure is then modified such that the approximate responses of the RC member are equivalent to the targets of the design performance. The modified procedure is implemented in three design examples and numerically evaluated. It is concluded that the modified procedure can be used more effectively in order to ensure that the actual responses of designed members reflect the respective targets of design performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.