Abstract

With the demand of safety and lightweight for truck industry, the welded H-beam structure used for truck frame trends to be fabricated by ultra high-strength steel gradually. However, deformation and stress is still a big issue for welding manufacture of H-beam by ultra high-strength steel. In this study, H-beam deformation of BS960E, which was recently developed by Baosteel Group Corporation, was investigated by numerical simulation and experimental test. A three dimensional (3D) thermo-mechanical finite element model of submerged arc welding (SAW) on H-beam structure of BS960E was proposed, which considered double ellipsoidal heat source, temperature-dependent material physical and mechanical properties, and stress relaxation in the weld molten pool. The simulation results including temperature and residual deformation were both validated by experimental test. Based on the developed model, the effect of heat input and welding sequence on welding deformation of H-beam structure was studied. The optimal welding parameters were finally obtained by the numerical analysis and the experimental verification. The results showed that combining with numerical model and experiment test the welding deformation of H-beam welded by ultra high-strength steel could be controlled effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call