Abstract

The deformation characteristics of icosahedral Al–Cu–Fe quasicrystals were determined by high temperature creep experiments between 680 and 720 °C and 15 and 41 MPa. The deformation process was determined to be controlled by grain boundary mechanisms. Both the stress and grain size sensitivity exponents were found to be 2, suggesting that grain boundary sliding was the rate-controlling deformation mechanism. Microstructural analysis supported this conclusion, as no intragranular defects were produced during the deformation experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.