Abstract

The deformation behaviors of compressed freeze-dried and spray-dried tolbutamide/hydroxypropyl-beta-cyclodextrin molecular dispersions were evaluated and compared with similarly prepared tolbutamides (TBM), hydroxypropyl-beta-cyclodextrins (HP-beta-CD) and as their physical dispersions. TBM, HP-beta-CD, and their 1:1 molecular dispersions were prepared by freeze-drying and spray-drying, and physical dispersions of TBM and HP-beta-CD were blended. Deformation properties of the prepared materials were evaluated by using a compaction simulator and constants derived from Heckel plots. Molecular dynamics (MD) simulations were performed in order to gain a molecular-level view on the deformation behavior of TBM-HP-beta-CD inclusion complex. The freeze-dried TBM polymorphic form II was less prone to overall particle deformation than the spray-dried stable form I. Formation of molecular dispersions decreased the plastic and elastic behaviors of these materials. Also, the MD simulations showed a reduced molecular flexibility of the TBM-HP-beta-CD inclusion complex, as compared to HP-beta-CD. The formation of TBM and HP-beta-CD molecular dispersion resulted in more rigid molecular arrangements, which were less prone to deformation than either HP-beta-CDs or physical dispersions. The results showed how differing molecular, solid, particle, and powder state properties affect the deformation properties of the materials studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call