Abstract

ith the development of the additive manufacturing method, the production of lattice structures with complex geometries attracts increasing attention. These lattice structures can be designed with the desired properties, and they are encountered in many areas such as automotive, aerospace and aviation, and manufacturing industries, as they offer the freedom to control their physical, mechanical and geometric properties. The high strength characteristic of lattice structures that can be designed at any scale makes these structures useful for producing different designs. Since the mechanical responses of the lattice structures depend on the lattice design parameters, such as the large number of independent struts forming the lattice, cell size and cell geometry, the mechanical behaviour of these structures should be examined. In this study, a porous lattice structure with four different cell models, namely Dode Medium, Diamond, Rhombic Dodecahedron, and Dode Thin, was produced by Selective Laser Melting (SLM) method. In order to reveal the mechanical properties and deformation responses of the porous lattice structures, they were analyzed under compression test and by the finite element method, and experimental and numerical procedures were compared. The effect of the compression test on the lattice properties and how the deformation is distributed throughout the lattice structure were investigated. The finite Element Analysis and Digital Image Processing (DIP) method was used to determine how the lattices deform. The results obtained will be useful for designing new metallic lattice structures with more excellent deformation resistance in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call