Abstract

Dislocation core dominates dislocation mobility and mechanical properties of crystalline solids. To date, a complete landscape for describing dislocation with narrow core in metals like aluminum (Al) remains elusive, and thus deformation mechanisms of Al alloys are still unclear. This work investigates the dislocation core structure and deformation behaviors of Al alloyed with solutes X (X = Mg, Si, Cu, Zn, and Fe) within the framework of semi-discrete variational theory combined with first-principles calculations. Depending on the dislocation core characteristics, the deformation modes of Al alloys are governed by the compositional-dependent misfit potentials. Except for Fe, all other solutes in Al decrease the intrinsic SF energy, with considerable effects being Mg and Si. The deformation tends to occur via cross-slip of dislocations in Al alloyed with Mg, whereas Si additions can benefit to deform via emission of partial dislocations. Our investigation offers theoretical guidance for choosing solutes favorable to mechanical performances of Al alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call