Abstract

In this paper, deformation behaviors and microstructure evolution of a hot-rolled AZ31B magnesium alloy under cyclic loadings are investigated. The relationship between plastic deformation and microstructure evolution and the crack formation mechanisms are discussed. Under a high cyclic stress (90–140 MPa), steady ratcheting effect occurred in the material and the development of ratcheting strain went through three stages: 1) Stage I - initial rapid increase stage; 2) Stage II - steady stage; and 3) Stage III - final abrupt increase stage. Under a low cyclic stress (≤ 90 MPa), inconspicuous ratcheting effect was found in the material, indicating a light damage in the material. When the cyclic stress is below 30 MPa, no ratcheting effect is found and only elastic deformation occurs in the material. The formation of cracks in Stages I & II is mainly due to the activation of the basal slip system. The mean geometrically necessary dislocations (GND) are calculated to analyze the relationship between the basal slip and the ratcheting effect during the cyclic loading. Finally, a new approach is proposed to estimate the AZ31B magnesium alloy’s cyclic strength (at 107 cycles) according to the cyclic stress at which steady ratcheting effect starts to occur in the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.