Abstract

In order to investigate the influence of normal stress through thickness on the formability of sheet metal, the viscous pressure bulge(VPB) tests of an annealed TC1 titanium alloy sheet were carried out under two different conditions: double-sided pressure bulging and conventional single-sided pressure bulging. The automated strain analysis, measurement environment (ASAME) and scanning electron microscope(SEM) were used to study the strain distributions and the fracture morphology of bulged specimens. It is found that thickness strain is increased for double-sided pressure bulging specimens, and the limiting dome height(LDH) of double-sided pressure bulging specimens is increased by 31.8% compared with conventional single-sided pressure bulging specimens. The dimples in fracture surface for double-sided pressure bulging specimens are larger and deeper than those for conventional single-sided pressure bulging specimens. The results indicate that normal stress through thickness is helpful in improving the formability of titanium alloy sheet metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call