Abstract

Herein, we studied the microstructural evolution and deformation behavior of aged Mg–5Y–2Nd–xSm–0.5Zr (x = 1, 3, and 5 wt%) alloys during uniaxial compression at room temperature by transmission electron microscopy and quasi-in-situ electron backscatter diffraction techniques. The microstructures of Mg–5Y–2Nd–xSm–0.5Zr alloys are refined by the addition of Sm, with more occurrences of Mg(Nd, Sm) precipitates. The average grain size decreased significantly with increasing Sm content, from 80.4 µm (1 wt% Sm) to 64.8 µm (3 wt% Sm) and 50.0 µm (5 wt% Sm). The Mg–5Y–2Nd–3Sm–0.5Zr alloy exhibited a maximum compressive strength of 390.1 MPa and a maximum strain (ε) of 0.103 at room temperature; {10−12} tensile twinning and dislocation slips are the main plastic deformation modes of Mg–5Y–2Nd–xSm–0.5Zr alloys during compression at room temperature. A number of<a>and<c + a>dislocations were observed in the aged Mg–5Y–2Nd–3Sm–0.5Zr alloy. The optimized ductility value is attributable to grain refinement; elemental Sm promotes the activation of the non-basal<c + a>slip dislocations and interactions between twins and<c + a>dislocations. The strengthening mechanism mainly includes solid solution, fine-grain, and precipitation strengthening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.