Abstract

Electro-deposited pure Fe has a characteristic of having very sharp isotropic ND//<111> fiber texture with a needle-like shaped fine grain elongated to ND. This Fe exhibits a surprisingly high r-value of over 7; however, such a high r-value might not be rationalized only from texture. Careful slip analyses reveal that restricted slips take place in the specific {110} slip planes, which are perpendicular to the sheet surface. Since grain boundaries with columnar structure are also perpendicular to the sheet surface, the slip plane in a certain grain may easily connect to the slip plane in adjacent grains having within ±30 degree rotation relationship around the common axis of ND//<111>. The operation of such a slip system is considered to cause the width strain much larger than the thickness strain. Furthermore, the texture evolution during cold-rolling and subsequent annealing was investigated using electro-deposited pure Fe as a starting material. Regardless of the amount of cold-rolling reduction, 65% to 90%, {111}<112> cold-rolling texture developed. After recrystallization, {111}<112> texture remained when material is cold-rolled by 65%, while {111}<011> texture developed when materials are cold-rolled by 80% and 90%. From the investigation into the mechanism on the development of recrystallization texture, the oriented nucleation and selective growth theories are concluded to contribute to the evolution of annealing texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.