Abstract

The deformation behavior of commercially pure titanium is studied using experiments and a crystal plasticity model. Compression tests along the rolling, transverse, and normal-directions, and tensile tests along the rolling and transverse directions are performed at room temperature to study the activation of slip and twinning in the hexagonal closed packed titanium. A detailed EBSD based statistical analysis of the microstructure is performed to develop statistics of both {10−12} tensile and {11−22} compression twins. A simple Monte Carlo (MC) twin variant selection criterion is proposed within the framework of the visco-plastic self-consistent (VPSC) model with a dislocation density (DD) based law used to describe dislocation hardening. In the model, plasticity is accommodated by prismatic, basal and pyramidal slip modes, and {10−12} tensile and {11−22} compression twinning modes. The VPSC-MC model successfully captures the experimentally observed activation of low Schmid factor twin variants for both tensile and compression twins modes. The model also predicts macroscopic stress-strain response, texture evolution and twin volume fraction that are in agreement with experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call