Abstract

To study the hot deformation behavior of Ni3Al-based alloy, hot compression tests were conducted in the temperature range of 1050–1250 °C with the strain rates from 0.01 to 10 s−1. With the increase in deformation temperature and the decrease in strain rate, flow stress of the Ni3Al-based alloy would be decreased. Based on the obtained constitutive equation, the calculated values of peak flow stress are in good agreement with the experimental ones, and the activation deformation energy is determined as 802.71 kJ/mol. Moreover, by dynamic material model (DMM), processing maps of the hot-deformed Ni3Al-based alloys are established. It is indicated that the optimum processing parameters for the studied alloy correspond to deformation temperature of 1250 °C and strain rates from 0.01 to 0.1 s−1. Specimens deformed under the optimum processing conditions exhibit fine and uniform grains, which is a typical dynamic recrystallization (DRX) microstructure. The DRX degree could be effectively enhanced with the increase of deformation temperature and the decrease of strain rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.