Abstract

AlCoCrFeNiTi0.5 high-entropy alloy (HEA) shows excellent properties in hardness and corrosion resistance. AlCoCrFeNiTi0.5 HEA was prepared using a non-consumable vacuum arc furnace. Hot-deformation behavior of AlCoCrFeNiTi0.5 HEA was explored under 1073–1373 K with a strain rate between 0.001 and 1 s−1 using a Gleeble-3800 thermomechanical simulator. The constitutive equation was established using the Arrhenius model, and the deformation activation energy and material constant were obtained. The processing map of HEA within 0.3–0.6 deformation was drawn according to dynamic material model (DMM). The results show that the hot-deformation process of HEA is dominated by work hardening combined with dynamic recovery, and dynamic recrystallization. The flow stress of HEA is significantly affected by deformation temperature and strain rate. The constitutive equation was constructed and verified, and the correlation coefficient of R2 = 0.9873 indicated that the constitutive equation can be used to accurately predict the flow stress of HEA. The processing map of HEA shows that the optimal hot-working process parameters are in the range of temperature 1150–1300 K and strain rate 0.002–0.05 s−1. This work will provide theoretical guidance for the hot-processing of HEA, which effectively promotes the application of the HEA in industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.