Abstract

The deformation behavior and microstructure of 6061 aluminum alloy processed by severe plastic deformation (SPD) using biaxial alternate forging that can evaluate the forming limit and mechanical properties of alloys, simultaneously, were investigated in this study. A finite element (FE) analysis on the biaxial alternating forging process, considering the strain-hardening coefficient and forging pass of the material, was conducted. When the strain-hardening coefficient is 0, an average effective strain of 440% was found within a diameter of 4 mm in the core of the workpiece after eight passes, while it was 300% at the same pass number when the strain-hardening coefficient was 0.2. The average effective strain estimated from the FE analysis was about 264% after eight passes of forging, which is considered to be a level of SPD that significantly exceeds the elongation of the raw material. As a result of the tensile test according to the forging pass, after two passes, the strength of the material could be gradually improved without significant degradation of elongation. Even though a large strain of 264% was found after eight passes were applied, deformed grains and twins with no recrystallized structure in optical microstructures with different forging passes were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.