Abstract

We approach the reconstruction of the recent structural evolution of Stromboli volcano (Italy) and the analysis of the interplay between tectonics, gravity and volcanic deformation. By tying together structural, lithostratigraphic and rock mechanics data, we establish that since 100 ka BP, the edifice has faulted and jointed mainly along NE-striking planes. Faults mostly dip to the NW with normal displacement. Taking also into account the presence of a NW-trending regional least principal stress and of tectonic earthquake hypocenters inside the cone, we suggest that this fracturing can be related to the transmission of tectonic forces from the basement to the cone. Dyking concentrated along a main NE-trending weakness zone (NEZ) across the volcano summit, resembling a volcanic rift, whose geometry is governed by the tectonic field. In the past 13 ka, Stromboli experienced a reorganisation of the strain field, which was linked with the development of four sector collapses affecting the NW flank, alternating with growth phases. The tectonic strain field interplayed with dyking and fracturing related to unbuttressing along the collapse shoulders. We propose that tectonics control the geometry of dykes inside the cone and that these, in turn, contribute to destabilise the cone flanks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.