Abstract
Flapping wing aerial vehicles continue to be a growing field, with ongoing research into unsteady, low Reynolds number aerodynamics and micro fabrication. However research into deformation and stress of flapping wing continues to lag, especially based on composites model. One flapping cycle was divided into twelve segments, and maximum defmortion and stress were calculated in each segment. The results show that the maximum sdeformation at the beginning stages of downstroke is 19% larger than the maximum deformation at the beginning stages of upstroke, and the maximum stress at the beginning stages of downstroke is 29.9 larger than the maximum stress at the beginning stages of upstroke. This research is helpful to answer that why insect wings are so perfect through long evolution, thus improving the design of flapping-wing aerial vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.