Abstract

The hybrid composite consists of n(n > 2) jointly working phases. We define the thermomechanical characteristics and strength of composites by filling and reinforcing materials thermomechanical characteristics and strength basing on the suggestion that thin and strong fibre reinforced composite is quasiuniform, and there is a continuous contact between the filling medium and reinforcing fibers. The development of a mathematical model of the design under consideration has been based on following assumptions: 1) for irreversible processes, the classical thermodynamic postulates are valid, and they are introduced as functions of state of internal energy and entropy; 2) for a solitary volume of materials, internal energy is assumed to be proportional to the volume fraction of the j-th phase vj; 3) for the material pressure limit conditions just before the essential damage, it is suggested that: a) the whole composite as well as the components are steady, i.e. Drukker's postulate is valid; b) the deformation law associated with the corresponding strength surface is valid, and c) small values of increases in plastic deformation play the leading role. The strength of unidirectionally reinforced hybrid monolayers is predicted by using a linear programming code.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call