Abstract

In this paper we study the deformation and stability of a shallow shell under uniform edge tension, both theoretically and experimentally. Von Karman’s plate model is adopted to formulate the equations of motion. For a shell with axisymmetrical initial shape, the equilibrium positions can be classified into axisymmetrical and unsymmetrical solutions. While there may exist both stable and unstable axisymmetrical solutions, all the unsymmetrical solutions are unstable. Since the unsymmetrical solutions will not affect the stability of the axisymmetrical solutions, it is concluded that for quasi-static analysis, there is no need to include unsymmetrical assumed modes in the calculation. If the shell is initially in the unstrained configuration, it will only be flattened smoothly when the edge tension is applied. No snap-through buckling is possible in this case. On the other hand, if the shell is initially in the strained position, it will be snapped back to the stable position on the other side of the base plane when the edge tension reaches a critical value. Experiment is conducted on several free brass shells of different initial heights to verify the theoretical predictions. Generally speaking, for the range of initial height H < 10 the experimental measurements of the deformation and the reverse snapping load agree well with theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.