Abstract

Solid ice discharge from land-based ice masses into the ocean raises the global sea level and accelerates due to anthropogenic climate change. Modelling ice flow dynamics aims to provide better projections of future sea level rise. The Antarctic and Greenland ice sheets are predominantly drained through ice streams, which are regions of higher ice flow velocity than their surroundings, and thus play an important role in ice sheet dynamics. However, little is known about their rheology. Therefore, they may introduce large uncertainties in ice sheet models. In order to study the main deformation and recrystallization mechanisms dominant in an ice stream, we conducted microstructural analyses on samples from the EastGRIP ice core that was drilled in the largest Greenlandic ice stream, the Northeast Greenland Ice Stream (NEGIS). The data set contains 1064 samples, oriented vertically and horizontally to the ice core axis, from depths between 111 and 2121 m. Analyses of the deepest 550 m of the ice core are pending. All samples were scanned with 5 µm resolution under bright-field illumination with a Large Area Scanning Macroscope (LASM). The obtained microstructure, i.e. grain shape, size, and elongation, was extracted using digitalised grain boundary networks by means of a machine-learning based image analysis software. We determined six different rheological regimes through the ice column. Most microstructural changes were interpreted as changes in recrystallization mechanisms, whereas the dominant deformation mode, horizontal extension, appears to remain fairly constant below 500 m of depth. Previous numerical high-strain ice deformation simulations showed strain localisation with the development of visible shear bands. A similar setting was expected inside ice streams, but at the investigated depths of the EastGRIP ice core, no clear shear bands could be discerned so far for the applied sampling resolution. These results indicate that NEGIS has no strong high-strain localisation down to 2121 m depth but probably deforms as a block with extension along flow. The high ice flow velocities, therefore, might have to be compensated either in the lowest 500 m or below the ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.