Abstract
A single gas bubble rising in a narrow vertical tube is investigated via a numerical model on a 3-D axisymmetric computational domain. The transient governing equations are solved by a finite volume scheme with a two-step projection method. The interface between the liquid and gas phase is tracked by a coupled level set and volume-of-fluid (CLSVOF) method. A surface tension modeling method, which preserves the jump discontinuity of pressure at the interface, is employed. The velocity distribution around the bubble and the bubble rise velocity obtained in the numerical simulation are in excellent agreement with experimental measurements. Special attention is paid to the bubble oscillations during the initial stage of ascent. It has been found that the bubble bottom undergoes severe oscillations while the nose maintains a stable shape. A parametric study is performed to identify the factors controlling the oscillations at the bubble bottom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.