Abstract
Abstract The interaction between shock waves and multiple cylinders, referred to as shock–cylinder interaction (SCI), is an important phenomenon in science and engineering. However, its underlying physical mechanisms remain unclear. This study entailed the numerical simulation of the aerobreakup of two tandem water columns subjected to a high-speed gas flow by using an adaptive mesh refinement (AMR)-based diffusion-interface model. The objective was to elucidate the changes in water–column deformation patterns over a wide range of Weber numbers. Statistical analysis was performed to examine the deformation of the water columns in vertical directions. Results reveal distinct deformation patterns between the two columns as the Weber number increases. Additionally, an extended exponential stretching law model was devised, and its improved capability to predict the deformation patterns was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.