Abstract

A lattice Boltzmann model is presented to simulate the deformation and motions of a red blood cell (RBC) in a shear flow. The curvatures of the membrane of a static RBC with different chemical potential drops calculated by our model agree with those computed by a shooting method very well. Our simulation results show that in a shear flow, a biconcave RBC becomes highly flattened and undergoes tank-treading motion. With intrinsically parallel dynamics, this lattice Boltzmann method is expected to find wide applications to both single and multi-vesicles suspension as well as complex open membranes in various fluid flows for a wide range of Reynolds numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call