Abstract

This article reviews the strengthening and fracture mechanisms that operate in carbon and low-alloy carbon steels with martensitic microstructures tempered at low temperatures, between 150 °C and 200 °C. The carbon-dependent strength of low-temperature-tempered (LTT) martensite is shown to be a function of the dynamic strain hardening of the dislocation and transition carbide substructure of martensite crystals. In steels containing up to 0.5 mass pct carbon, fracture occurs by ductile mechanisms of microvoid formation at dispersions of second-phase particles in the matrix of the strain-hardened tempered martensite. Steels containing more than 0.5 mass pct carbon with LTT martensitic microstructures are highly susceptible to brittle intergranular fracture at prior austenite grain boundaries. The mechanisms of the intergranular fracture are discussed, and approaches that have evolved to minimize such fracture and to utilize the high strength of high-carbon hardened steels are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call