Abstract

The deformation and fracture characterization of an Mg−2Sn−1Ca alloy were studied through uniaxial isothermal compression tests. The flow stress curves, the efficiency of power dissipation, the instability parameter and the fracture behavior of an Mg−2Sn−1Ca alloy under the condition of various hot working parameters were investigated according to the experimental data. Processing maps were established by superimposing the instability map over the power dissipation map. It was found that flow stress reduces with increases in the deformation temperature and decreases in the strain rate. The processing of Mg−2Sn−1Ca alloys should avoid the instability region in which the conditions are high strain under high temperature and low strain under low temperature. At 473 K or a high strain rate, unidirectional cracks and fish scale cracks can be produced, and cracks can be avoided under the optimum processing area of 623–723 K/0.001–0.1 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.