Abstract

In part 1 the microstructure and fracture characteristics of a rubber-modified epoxy, and for comparison that of the unmodified epoxy, were examined in detail. Based on this analysis a qualitative mechanism involving cavitation, shear yielding and plastic flow was proposed. As an extension of this work, the present paper considers the yield behaviour of the epoxy material and uses the data determined, together with the previously reported fracture results, to calculate values of the crack opening displacement. The rate/temperature dependence of the crack opening displacement and the correlations established between stress intensity factor, K Ic, yield stress and type of crack growth suggest that the extent of crack tip blunting largely governs the relative toughness of the epoxy materials and induces transitions in the types of crack growth observed. A quantitative expression is then presented which successfully describes the fracture toughness values over a wide range of temperatures and rates. The two parameters in this expression are shown to be material constants and therefore provide a unique failure criterion. They can be viewed simply as curve-fitting parameters but they may also have some significance in terms of a critical stress that must act over a critical distance ahead of the crack tip to produce crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.