Abstract

Deformation and fracture behavior of two Al-Mg-Si alloys in different aging conditions has been studied by tensile testing, transmission electron microscope (TEM), and scanning electron microscope (SEM) observation. Tensile test results show that the strain hardening exponents (n values) of the two alloys decrease sharply at the early stage of artificial aging and are only 0.045 and 0.06, respectively, in the overaged condition. The sharp decrease of work hardening rate is believed to be one major reason that results in the rapid decrease of elongation to failure at the early stage of artificial aging. In fully aged conditions, dislocations are concentrated in narrow bands during plastic deformation of these alloys, which is responsible for the very low n values of the Al-Mg-Si alloys in peak aged and overaged conditions. The Si particles formed in the interior of grains of the higher Si containing alloy reduce the inhomogeneous deformation behavior. The TEM results show that large precipitates and precipitate-free zones (PFZs) along grain boundaries are formed in peak aged and overaged conditions, and SEM observations demonstrate that the tensile fracture modes of the two alloys in these aging conditions are completely intergranular with many small cusps decorated on facets of the fractured grain boundaries. Thus, the fracture process of both alloys is suggested to be that in which the high local stresses, built up where the slip band impinges on the grain boundaries, nucleate voids at the grain boundary precipitates by decohesion of the particle/PFZ interface, and then coalescence of these voids within the PFZ leads to the final fracture of these alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.