Abstract

ABSTRACTHot isostatic pressing of nickel-based superalloys has important applications for manufacturing near-net shape parts such as turbine disks and jet engine parts, which have to operate at high temperatures. Finite element modelling can be used to predict deformation and densification behaviour of such superalloys. Thus, the cost and time of trial and error to obtain the required geometry of the part can be reduced, such that near-net shape parts can be manufactured more economically. Numerical simulations were carried out by implementing the model of ElRakayby and Kim into Abaqus-FEA. The model parameters (relative density functions f and c) for the nickel-based superalloy were obtained from the creep response and compressive strength of porous and solid powder compacts at high a temperature. The agreement between finite element calculations and the experimental data was good for densification, shape change and density distribution of nickel-based superalloy during hot isostatic pressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.