Abstract

This paper develops an experimentally validated computational model for titanium alloys accounting for plastic anisotropy and time-dependent plasticity for analyzing creep and dwell phenomena. A time-dependent crystal plasticity formulation is developed for hcp crystalline structure, with the inclusion of microstructural crystallographic orientation distribution. A multi-variable optimization method is developed to calibrate crystal plasticity parameters from experimental results of single crystals of α-Ti–6Al. Statistically equivalent orientation distributions of orientation imaging microscopy data are used in constructing the polycrystalline aggregate model. The model is used to study global and local response of the polycrystalline model for constant strain rate, creep, dwell and cyclic tests. Effects of stress localization and load shedding with orientation mismatch are also studied for potential crack initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call