Abstract

AbstractIncursion of high density penetrators into ceramic armor is preceded by the formation of a finely comminuted rubble bed at the penetrator tip, the Mescall zone. The deformation and failure processes that result in the Mescall zone are critical to understanding penetration resistance and to modeling penetration behavior. Transmission electron microscopy (TEM) was used to examine shock loaded material in the vicinity of an explosive detonation in α-Al2O3 and to infer the phenomenology of plasticity and fracture occurring at the tip of an advancing penetrator in ceramic armor. Comminution proceeds by intergranular fracture until the fragment size approaches the grain size. Further fragmentation proceeds by transgranular cracks, which nucleate at preexisting microvoids and at intersections of basal twins and primary and secondary slip bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call