Abstract

In-loop filters have attracted increasing attention due to the remarkable noise-reduction capability in the hybrid video coding framework. However, the existing in-loop filters in Versatile Video Coding (VVC) mainly take advantage of the image local similarity. Although some non-local based in-loop filters can make up for this shortcoming, the widely-used unsupervised parameter estimation method by non-local filters limits the performance. In view of this, we propose a deformable Wiener Filter (DWF). It combines the local and non-local characteristics and supervisedly trains the filter coefficients based on the Wiener Filter theory. In the filtering process, local adjacent samples and non-local similar samples are first derived for each sample of interest. Then the to-be-filtered samples are classified into specific groups based on the patch-level noise and sample-level characteristics. Samples in each group share the same filter coefficients. After that, the local and non-local reference samples are adaptively fused based on the classification results. Finally, the filtering operation with outlier data constraints is conducted for each to-be-filtered sample. Moreover, the performance of the proposed DWF is analyzed with different reference sample derivation schemes in detail. Simulation results show that the proposed approach achieves 1.16%, 1.92%, and 2.67% bit-rate savings on average compared to the VTM-11.0 for All Intra, Random Access, and Low-Delay B configurations, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.