Abstract

A new approach to studying localized chemical events in condensed phases is developed. The approach provides a simple and convenient method for reducing the total number of solvent particles explicitly included in simulations of localized processes while decreasing spurious edge effects. Both energy flow across the boundary and density fluctuations in the simulation region are included; this makes it possible to treat nonequilibrium processes, such as thermal gradients and endothermic or exothermic chemical reactions. The essential element of the approach is the introduction of a soft boundary force and a stochastic buffer region. For simple liquids, the boundary force is determined from the solvent equilibrium structure (radial distribution function) and is readily incorporated into conventional molecular dynamics algorithms. The methodology is illustrated by application to liquid argon in spherical and cubical simulation regions; comparison with standard molceular dynamics results show excellent agreement for structural, dynamic, and thermodynamic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.