Abstract

We have proposed a model of deformable self-propelled particles in which the time-evolution equations are given in terms of the center-of-mass velocity and a nematic order parameter representing the motion-induced deformation [T. Ohta and T. Ohkuma, Phys. Rev. Lett. 102, 154101 (2009)]. We investigate its many-body problem applying a global orientational coupling. Depending on the strength of the interaction, the self-propelled particles exhibit various kinds of collective dynamics and chaotic behavior: a ballistic procession state, a scattered state, a coherently phase synchronized state, two types of in-phase synchronized state, and an anomalously diffusive state. The phase reduction method for the weak coupling regime reveals the bifurcations between the secular collective motions. The phase boundary among the chaos regime and the synchronized regimes is determined by the linear stability analysis of the synchronized states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.