Abstract

We present a stable and efficient simulator for deformable objects with collisions and contacts. For stability, an optimization derived from the implicit time integrator is solved in each timestep under the inequality constraints coming from collisions. To achieve fast convergence, we extend the MPRGP based solver from handling box constraints only to handling general linear constraints and prove its convergence. This generalization introduces a cost of solving dense linear systems in each step, but these systems can be reduced into diagonal ones for efficiency without affecting the general stability via pruning redundant collisions. Our solver is an order of magnitude faster, especially for elastic objects under large deformation compared with iterative constraint anticipation method ICA, a typical method for stability. The efficiency, robustness and stability are further verified by our results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.