Abstract

In this research, by inspiration of natural myosin motion in artificial muscle contraction, a new method for changing the thickness of an airfoil has been proposed by hybrid of mixed integration electrolysis module and chemical reaction (HEFR) of sodium bicarbonate (NaHCO3 (s)) and acetic acid (CH3COOH (l)). The mentioned method has the ability to create pressure in the fluid in a short time and fast transfer without delay due to the integration of the method in the fluid transfer tube to soft sealed skin. With soft sealed skin swelling and movement of solid skeletal structure, the force is transmitted to the desired mechanism. First, for a single of soft skin and solid structure, remarkable displacement over time in the various loading condition (by the inflation tester) has been investigated. It is shown that the proposed mechanism is capable of moving 246 g during 3 s with total mechanism weight of 10 g. In the following, the mechanism is developed into a symmetrical rhombus (set of soft skin-solid structure) with the ability to contract and expand to provide variable airfoil thickness. The proposed mechanism has the ability to move in the horizontal and vertical axis (expansion and contraction) in lower than 5 s by applying the HEFR technique. Such a mechanism is mounted on a symmetrical airfoil and has the ability to change the airfoil thickness with the appropriate response time. The proposed mechanism can be used in various industrial applications such as robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.