Abstract

The deformability and the microstructures of Al-12.2Si-0.6Mg alloy during hot-rolling were investigated by means of rolling the specimens of wedge bars with length of 180mm and width of 30mm, which had front thickness of 5mm and back thickness of 44mm.The wedge bars were cut from the ingots of the Al-12.2Si-0.6Mg alloy by the semi-continuously direct chill (DC in short) casting. The specimens of wedge bars were hot-rolled following holding between 410°Cand 480°C for different time. The results show that the size, morphology, distribution characters of eutectic Si particles in the Al-12.2Si-0.6Mg alloy can be remarkably modified by semi-continuously DC casting, which consists of coarse ribbon-like Si-particles with less than 5μm in length and 1μm in width and quite a lot eutectic phases of less than 0.4μm in size and space. The results also show that the ingots of the Al-12.2Si-0.6Mg alloy by the semi-continuously DC casting can possess excellent deformability during hot-rolling if the extent of heating is provided over 440°C for 60min and 410°C for 120min, and they cannot emerge cracked edges with the compression ratio of 85% by single-pass rolling. Their hot-plasticity depends on the size and space between eutectic phases in the ingots. Hot-rolling deformation makes ribbon-like Si phases in them crack and spheroidize, and then results in the sizes of coarse Si particles tending to be consistent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call