Abstract
Abstract Object detection research predominantly focuses on clear weather conditions, often overlooking the challenges posed by foggy weather. Fog impairs the vision of onboard cameras, creating significant obstacles for autonomous vehicles. To tackle these issues, we present the Defog YOLO algorithm, specifically designed for road object detection in foggy conditions. Our approach integrates an enhanced U-Net framework for visual defogging, where the encoder leverages super-resolution back projection to combine multi-layer features. The decoder employs a back projection feedback mechanism to improve image restoration. Additionally, we augment the Feature Pyramid Network with a noise-aware attention mechanism, allowing the network to emphasize critical channel and spatial information while mitigating noise. Given the scarcity of labeled foggy images, we introduce a fog addition module to generate a more diverse training dataset. We validate our method using a synthesized FOG-TRAINVAL dataset, derived from the VOC dataset, demonstrating its robustness in foggy scenarios. Experimental results show that our proposed method achieves an mAP score of 60% on the Real-world Task-driven Testing Set foggy weather test set, with a precision of 86.7% and a recall of 54.2%. These findings underscore the effectiveness and improved generalizability of our approach for object detection in adverse weather conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.