Abstract

We demonstrate the direct imaging of the second harmonic generation radiation from a single nonlinear nanocrystal using defocused nonlinear microscopy. This technique allows the retrieval of complete information on the 3D orientation of a nanocrystal as well as possible deviations from its purely crystalline nature, in a simple experimental implementation. The obtained images are modeled by calculation of the radiation diagram from a nonlinear dipole that accounts for the excitation beam, the crystal symmetry and the particle size. Experimental demonstrations are performed on Potassium Titanyl Phosphase (KTP) nanocrystals. The shape and structure of the radiation images show a strong dependence on both crystal orientation and field polarization state, as expected by the specific nonlinear coherent coupling between the induced dipole and the excitation field polarization state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.