Abstract

Defocus blur detection (DBD) is the separation of in-focus and out-of-focus regions in an image. This process has been paid considerable attention because of its remarkable potential applications. Accurate differentiation of homogeneous regions and detection of low-contrast focal regions, as well as suppression of background clutter, are challenges associated with DBD. To address these issues, we propose a multi-stream bottom-top-bottom fully convolutional network (BTBNet), which is the first attempt to develop an end-to-end deep network for DBD. First, we develop a fully convolutional BTBNet to integrate low-level cues and high-level semantic information. Then, considering that the degree of defocus blur is sensitive to scales, we propose multi-stream BTBNets that handle input images with different scales to improve the performance of DBD. Finally, we design a fusion and recurrent reconstruction network to recurrently refine the preceding blur detection maps. To promote further study and evaluation of the DBD models, we construct a new database of 500 challenging images and their pixel-wise defocus blur annotations. Experimental results on the existing and our new datasets demonstrate that the proposed method achieves significantly better performance than other state-of-the-art algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.